Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  ArchiMer
País:  France
Título:  Pinctada margaritifera responses to temperature and pH: Acclimation capabilities and physiological limits
Autores:  Le Moullac, Gilles
Soyez, Claude
Latchere, Oihana
Vidal-dupiol, Jeremie
Fremery, Juliette
Saulnier, Denis
Lo Yat, Alain
Belliard, Corinne
Mazouni-gaertner, Nabila
Gueguen, Yannick
Data:  2016-12
Ano:  2016
Palavras-chave:  Global change
Pearl oyster
Bioenergetic
Biomineralization
Pacific ocean
French Polynesia
Resumo:  The pearl culture is one of the most lucrative aquacultures worldwide. In many South Pacific areas, it depends on the exploitation of the pearl oyster Pinctada margaritifera and relies entirely on the environmental conditions encountered in the lagoon. In this context, assessing the impact of climatic stressors, such as global warming and ocean acidification, on the functionality of the resource in terms of renewal and exploitation is fundamental. In this study, we experimentally addressed the impact of temperature (22, 26, 30 and 34 °C) and partial pressure of carbon dioxide pCO2 (294, 763 and 2485 μatm) on the biomineralization and metabolic capabilities of pearl oysters. While the energy metabolism was strongly dependent on temperature, results showed its independence from pCO2 levels; no interaction between temperature and pCO2 was revealed. The energy metabolism, ingestion, oxygen consumption and, hence, the scope for growth (SFG) were maximised at 30 °C and dramatically fell at 34 °C. Biomineralization was examined through the expression measurement of nine mantle's genes coding for shell matrix proteins involved in the formation of calcitic prisms and/or nacreous shell structures; significant changes were recorded for four of the nine (Pmarg-Nacrein A1, Pmarg-MRNP34, Pmarg-Prismalin 14 and Pmarg-Aspein). These changes showed that the maximum and minimum expression of these genes was at 26 and 34 °C, respectively. Surprisingly, the modelled thermal optimum for biomineralization (ranging between 21.5 and 26.5 °C) and somatic growth and reproduction (28.7 °C) appeared to be significantly different. Finally, the responses to high temperatures were contextualised with the Intergovernmental Panel on Climate Change (IPCC) projections, which highlighted that pearl oyster stocks and cultures would be severely threatened in the next decade.
Tipo:  Text
Idioma:  Inglês
Identificador:  http://archimer.ifremer.fr/doc/00332/44364/43969.pdf

DOI:10.1016/j.ecss.2016.04.011

http://archimer.ifremer.fr/doc/00332/44364/
Editor:  Academic Press Ltd- Elsevier Science Ltd
Formato:  application/pdf
Fonte:  Estuarine Coastal And Shelf Science (0272-7714) (Academic Press Ltd- Elsevier Science Ltd), 2016-12 , Vol. 182 , N. Part.B , P. 261-269
Direitos:  2016 Elsevier Ltd. All rights reserved.

info:eu-repo/semantics/openAccess

restricted use
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional